x^2+x^2=72^2

Simple and best practice solution for x^2+x^2=72^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+x^2=72^2 equation:



x^2+x^2=72^2
We move all terms to the left:
x^2+x^2-(72^2)=0
We add all the numbers together, and all the variables
2x^2-5184=0
a = 2; b = 0; c = -5184;
Δ = b2-4ac
Δ = 02-4·2·(-5184)
Δ = 41472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{41472}=\sqrt{20736*2}=\sqrt{20736}*\sqrt{2}=144\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144\sqrt{2}}{2*2}=\frac{0-144\sqrt{2}}{4} =-\frac{144\sqrt{2}}{4} =-36\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144\sqrt{2}}{2*2}=\frac{0+144\sqrt{2}}{4} =\frac{144\sqrt{2}}{4} =36\sqrt{2} $

See similar equations:

| -5x+-4=6 | | -5x+-5=10 | | 2x^2+32x=16x | | -5c+3=12 | | 2m+7;m=-3 | | 5n-1;n=2 | | 5x+9=84+96 | | 1/8=4x5 | | p2+9p+14=0​ | | (-4/9)f=-3 | | 10-2v=-50 | | 3+2p+9=22 | | k/−5-27=−16 | | 4x-2+2x+10+74=180 | | 4x-(-3)=2 | | 4x-2+2x+10=74 | | –c=15 | | 1/6x+2=1/2x-2 | | 5p−17=2(2p−7 | | 2x+20-5x-11=11x-63 | | -20=(p/15) | | 0.5x^2-6x+3=-7 | | 3x+22=5x+26 | | 8a÷15=17 | | h−13=–3 | | a+a÷2=75 | | 2x+20+5x-11+11x-63=180 | | x=180(11x+33) | | 180=8x-35+6x-5+3x-1 | | 4x+8=20-2x | | 10x+30+3x-6=180 | | m²+8m=48 |

Equations solver categories